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Living cells are controlled by the most complex signalin§ networks.
Can we (1) understand the function of these networks, (2) be able to
engineer new ones with desired function!?

The protein interaction network
of Syphilis bacteria (Treponema
pallidum). Each circle in the
figure represents a protein
while each line indicates a
direct physical interaction.

Drug Discovery & Development magazine: Vol. 11, No. 8, August, 2008, pp. 22-25.
O
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Living cells are controlled by the most complex signaling networks.
Can we (1) understand the function of these networks, (2) be able to
engineer new ones with desired function!?

in vitro data model of phosphorylation reactions
between A=KaiA, B=KaiB, C=KaiC
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Najajima et al, Science, 308, 414-415, 2005
van Zon et al, PNAS, 104: 7420-7425, 2007
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Living cells are controlled by the most complex signaling networks.
Can we (1) understand the function of these networks, (2) be able to
engineer new ones with desired function!?

Want to notice patterns in biological signaling/regulatory networks

Engineer embedded controllers for artificial biochemical systems,
“wet robots”, smart drugs, etc

http://www.artbywicks.com
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Part 1 of 2:

The Programming Language of Chemical Kinetics

Using the language of Chemical Reaction Networks (CRNs)
prescriptively as a “programming language” rather than descriptively as
a modeling language for existing systems

Real programmers code in CHEMISTRY
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Outline of Part |

* Stochastic CRN model

* Mass-action CRN model

* Stochastic CRNs:
* illustrative examples: arithmetic operations
* characterizing deterministic behavior

* allowing error permits much more complex behavior (Turing
universality)

* Mass-action CRNs:
* dynamical systems

* Circuits
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Chemical Reaction Networks (CRN)

X o_5> 2X) stochastic: discrete state space,
2, — Xi continuous time Poisson process
X+ X, —— 2X
X, —% -
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X %3 ax; ;
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mass-=-action: continuous ODEs
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Stochastic CRNs model

*Finite set of species {A, B, C, D..}. A state is a vector of non-
negative integers, specifying the molecular counts of each species. We

also write molecular counts as #A, #B...

*Finite set of reactions. Each reaction is specified in chemical notation;

for example:
A+BS

indicates a reaction in which the counts of A and B are decreased by 1,

and the count of C is increased by 1. Each reaction has an associated
rate constant k. (Unimolecular rate constants have units of sec!,

bimolecular rate constants have units of liters - molecules! - sec™!)

continued m»
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Stochastic CRNs model

* The system evolves via a continuous time Poisson process:

reaction type propensity @ ;: the probability of reaction j in time instant dt
A 5o k#A
A+B & k-#A -#B /v
ArA & k-#A(#A —1)/v

time until next reaction is exponential random variable with rate Zaj

probability that next reaction is j* is aj*/Zaj
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Scaling from stochastic to mass-action

Increase solution volume v and the molecular counts of all species such that for each
species #X/v stays constant. (Because we measure mass-action concentration in moles/
liter, we have to multiply bimolecular rate constants by Avogadro’s number.)

In this way we get mass-action regime in the limit v— 0.

- »
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Mass-action CRNs model

*Finite set of species {A, B, C, D...}. A state is a vector of non-
negative real numbers, specifying the concentrations of each species.

We also write concentrations as [A], [B]...

*Finite set of reactions. Each reaction is specified in chemical notation;

for example:
P A+B5 C

Each reaction has an associated (mass=-action) rate constant k.
(Unimolecular rate constants have units of sec’!, bimolecular rate

constants have units of molar' - sec!)

continued =
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Mass-action CRNs model

*In any state reaction fluxes are as follows:

reaction type reaction flux @ ; (moles - liter”' - second™')
A K k-[A]

A+B & k-[A]-[B]

A+Aa E k- [A]”

* The system behaves according to the ODEs:

d
— [X] == Z a;: [net stoichiometry change of X in reaction i]
dt -
reaction j
dA] k[A] general case formally:
dt . . .
A LN B d|B] ) V. X +V, X,+Vv, X, +...=—=> v/ X +V,. X, +V,. X, + ...
k —— = kilA]=2k[B] :
B+B = C dt dx; _ Y (v/=v) k [T
@ _ 2 dt - kA 28
i~ felB |
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Physical justification for CRNs

e well-mixedness

* bouncing ball interactions

® instantaneous reactions

* large molecular counts of all species

MOLECULE 2

0Veon = mriz® vyadt

f‘+ fo

v
dﬁ\

vt

McQuarrie 1967, van Kampen, Gillespie 1977, 1992, etc

Kurtz,“The relationship between stochastic and deterministic models for
chemical reactions”, | Chem Phys 57:2976, 1972

* thermodynamics says all reactions must be reversible

e if a reaction can occur with a catalyst, it must occur without it (at a slower rate)
* closed system must satisfy Gibbs free energy

* molecules are made of atoms; must be consistent with atomic decomposition and

conservation of mass

Tuesday, September 20, 2011

open systems, implicit energy and mass sources, effectively
irreversible reactions, high energy barriers



Abstract CRNs have been extensively
theoretically investigated

e simulation: accuracy, computation time

equilibrium analysis: number of steady states, bistability?, oscillation?, limit cycle?,
chaos?

deviant behavior of stochastic compared to mass-action

derived models: Michaelis-Menten, Hill functions, GRNs, S-Systems, NHCA, etc
time-separation arguments

network motifs: search and in-silico evolution

But designing molecular algorithms? Not so
much...
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|“

Judging speed of chemical “algorithms”

* Can speed up any behavior by a factor of & if we multiply all rate constants
by «.

e Can speed up behavior by increasing molecular counts but keeping volume
the same. This translates to increasing concentration in mass-action.

Thus for meaningful analysis of speed of chemical “algorithms”:

e fix largest rate constant (say k=1)

* asymptotically, volume v = O(total molecular count). This translates to bounding
maximum concentrations in mass-action.
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Programming exercises with stochastic CRNs

A—B+B

start with n X
A+X $A+ Y
X+Yy+Y

Tuesday, September 20, 2011

Programming exercise |:
#B = 2-#A nA’s

expected time of this algorithm: 1+ : . + - +% = O(logn) (fast!)
n o n-—

7

expected time for one instance of reaction
whose propensity is #A = n

Programming exercise 2:

Detect a molecule of A among 1 molecules in solution
volume v=n

expected time of this algorithm: 1 + O(logn) =0®(logn)  (fast!)

7

expected time for one instance of first reaction expected time for n instances of second reaction
whose propensity is (#A-#X)/v=(1-n)in =1 whose propensity is (#X-#Y) /v



Programming exercises with stochastic CRNs

start with 1T and n A

A+T b F
A+F 5 T

Tuesday, September 20, 2011

Programming exercise 3:
#A = 2-#A nos

volume v=n

Programming exercise 4:

? nA’s
Is #A even! volubae s ~ n

expected time of this algorithm:at least n  (slow!)

Expected time for the last A to react with T or F.
Propensity of this reaction is (HA-#T,F) /v=(l-1)/n



How can stochastic CRNs compute
“deterministically’?

Species T and F representing output.

YES is absorbing set of states with #T>0, #F=0.

NO is absorbing set of states with #T=0, #F>0.

Everything else (not in YES or NO) can have arbitrary #T, #F.

YES is reachable from any state that is reachable from a yes-input, but
is not reachable from any no-input.

NO is reachable from any state that is reachable from a no-input, but is
not reachable from any yes-input.

(For simplicity assume finite state space for any input. Need to be more
careful for infinite state spaces (eg. A—2A), but intuition is the same.)
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How can stochastic CRNs compute
“deterministically’?

HA > #B #A is even
start with 1F and input start with 1T and input
amounts of A, B amount of A
A+F = T A+T = F
B+T — F A+F = T

HA > #B and #A is even
startwith 1 FI,1 T2, 1F

FI+T — FI+F
' A B
and input amounts of A, F2+T — F2+F
A+T2 = A+F2 A+Fl = TI T+T2 & TT
A+E2 = A'+T2 B+T| — F| TTHF = TT+T
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How can stochastic CRNs compute
“deterministically’?

Boolean combination of threshold predicates and modulo
predicates:

threshold predicate: {x | x-v >r}

modulo predicate: {x | x-v = r (mod m)}

Tuesday, September 20, 2011



Stochastic CRNs are Turing Universal, allowing an (arbitrarily
small, non-zero) error probability

* Arbitrarily small, non-zero error probability over all time. Error probability
controlled by initial molecular count of “accuracy species”

* Two kinds of constructions: Register Machine simulation, Turing Machine simulation
* Turing universal computation can be made fast: t=poly(number of TM steps).

* But: Register machine or Turing machine simulation just doesn’t feel natural for
CRN:s. Information is stored in unary. Register machine: slow;Turing machine: too
many reactions. Has a feeling of shoehorning existing paradigms to a very different
system.
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Which dynamical systems can be
implemented with mass-action CRNs?

Oregonator (limit cycle oscillator)
Xr — X CO”%W
Xo4X — 0 Al
X1 — 2X1+X3 gl
2X, — 0 2
1

(S e~ U |

X3 — Xo
100 200 250 time

Rdéssler (chaotic)

X, — 2X;
2X; — X conct
Xo+X1 — 2X5 M
X0 — 0
Xi+X3— 0
X3 — 2Xj3

2X3 — X3 0 10 20 30 40 time

= N WS O
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Which dynamical systems can be
implemented with mass-action CRNs?

X = -y

i=x TP
Problems:

(1) Chemical concentrations cannot be negative.
(2) A species must appear as a reactant to be consumed. Thus the rate of its
consumption must be proportional to its concentration.

Solution with representation change: x = [Xp]-[Xn] y=[Yp]-[Yn]

fast

Xp+Xn— o

1
YP — Xn + YP ¢« = [X _IXnl = - = .
Gl } X = [Xp]-(Xn] = [Yn]-[Yp] = -y

Xp = Yp + Xp
Xn 5 Yn + Xn
Also:

Tuesday, September 20, 2011



Which dynamical systems can be
implemented with mass-action CRNs?

It is always possible to construct a CRN in which the concentration of some species
coincides with any desired accuracy for any desired period of time with the behavior of a
given system of polynomial ODEs with non-negative integer powers.

(Applies only to the behavior of the ODEs in the positive orthant.)

Constructed CRN has the following properties

-conservation of mass
-reactions of very simple form: at most two reactants and at most two products

-no autocatalysis
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Logic circuits with mass-action CRNs

a_ a
A+B—C A—C
B—C

-no signal restoration

-not dynamic or reusable: can’t change input values to get new output

-slow: for a single gate, if [A]=[B] then [A](t)=[B](t)=O(I/t) not O(e") §§‘;‘j§|g;;jg;°n:3i,§§;2;;1‘g‘e
DNA strand displacement
circuits” in DNA |5

1.0
0.8
0.6
04
0.2

[ALLB]

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
time time
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Dynamic logic circuits with mass-action CRNs

dual rail
x|y z representation:
species  value
U 0 x(0) x(1) X
0 1 1 high low 0
1 0 0 low high 1
|1 0 - logic thresholding
X j ) 7 :> X(0)+y(1)+w(0) — x(0)+y(1)+w(1) w(0)+w(0)+z(1) — w(0)+w(0)+z(0)
y ) x(1)+w(1) — x(1)+w(0) w(1)+w(1)+z(0) —w(1)+w(1)+z(1)
y(0)+w(1) — y(0)+w(0)
-
2-bit pulse counter
(digital circuit) %%nc

=TT
S
ez v |

Soloveichik, Seelig, Winfree,”DNA as a universal substrate for chemical kinetics”, PNAS, 107: 5393-5398 (2010)
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Dynamic logic circuits with mass-action CRNs:
signal restoration

w(0)+w(l) —’ SW
sw+w(0) - 3 w(0)
swtw(l) = 3 w(l)

w(0)+w(0)+z(I) —» w(0)+w(0)+z(0)
w(1)+w(1)+2(0) = w(l)+w(1)+z(1)

1 1
N 3
S £
2 05 2 05
o
— 0
E 5
3 g
0.5 1 0.5 1
initial w(l) initial w(l)
Magnasco, “Chemical kinetics is Turing universal”, Physical Jiang, Riedel and Parhi, “Digital Logic with
Review Letters 78: 1190-1193 (1997) Molecular Reactions,” submitted.
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Artificial Biochemistry

Luca Cardelli

Microsoft Research

Abstract

We model chemical and biochemical systems as collectives of interacting stochastic automata, with
each automaton representing a molecule that undergoes state transitions. In this artificial biochemis-
try, automata interact by the equivalent of the law of mass action. We investigate several simple but
intriguing automata collectives by stochastic simulation and by ODE analysis.

e
- I Y
Ne »)
A ©<>() v
' L - W [
e -
200 SPM 0 oM )
e 11
( ¢ 100 100 s !
0 0 0 Pt
0 01 0 01
=a0rb =aAnd b 100wA, 100n8 100WA, 1008 234
st SPM Sl SPM 200 SPM 200 SPM =
ik = : o1 "
l "
%0 . s r\: - 100 100
0 . ) —_" 0 0 °o 1 °o 08 §
% o & & W O o & & W ®f  f 8 O o n & 20 100% A, 100Ad-Bd) 100 A=), delaved I00xAd 3 4
1000wl ransel D 1000w, satessd 0 1000, catenel O S00mcla S0l ratowe 1.0
Figure 32 Orand And Figure 33 Imply and Xor Figure 34 Memory Elements

Luca Cardelli,“Artificial Biochemistry”, in Algorithmic Bioprocesses. Springer (2009)
( http://lucacardelli.name/Papers/Artificial%620Biochemistry.pdf )
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Part 2 of 2:

How To Discipline Your DNA Molecules with Strand
Displacement Cascades
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Engineering artificial signaling networks

Long-term goals:

-Insert desired control module into cells? Medical applications? Smart drugs?

-Abiological systems: control modules for nanomotors, self-assembly, polymerization, other
kind of chemistries? “VVet robot™?

-Develop clarity of thought for understanding biological signaling networks

Approach: No “alien” technology: only what we can understand and build

Tuesday, September 20, 2011



The strand displacement reaction

!

enzyme-free strand displacement aka branch migration

Green, C & Tibbetts, C. (1981) Nucleic Acids Research 9, 1905
Weinstock, P & Wetmur, J. (1990) Nucleic Acids Research 18, 4207
Panyutin, | & Hsieh, P. (1993) Journal of molecular biology 230, 413

first systematic use in DNA nanotechnology

Yurke, B & Mills, A. P. (2003) Genetic Programming and Evolvable Machines 4,
111
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Cascading of strand displacement reactions

o | xxreesree®

Dirks, Pierce, “Triggered amplification by hybridization chain reaction,”
PNAS 101, 15275 (2004).

LN

st et

Seelig, Soloveichik, Zhang, Winfree, “Enzyme-free nucleic
acid logic circuits,” Science 314, 1585 (2006).

Diagrams from: Zhang, Seelig, “Dynamic DNA nanotechnology using strand-displacement reactions”, Nature Chemistry 3, 103 (2011).
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Strand Displacement Cascades

2 3 4
.- >
short domain (aka toehold) long domain (aka displacement domain)
1 2
- >
2 3 4 5
) 2 >
<= -
I* Pk ik 4%
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Strand Displacement Cascades

2 3 4
--- >
1 2
--- >
2 3 4 5
-=) >
<= -
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Strand Displacement Cascades

- >

2
1 2 3 4 5
- >

<= -
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Strand Displacement Cascades

- >

2
1 2 3 4 5
>\ > >

<= -
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Strand Displacement Cascades

2 3 4
.- >
2 3
-=>
1 2 4 5
- > >
<= -
I 0 F 4
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Strand Displacement Cascades

2 3
==
2 4
1 2 3 4 5
- -- =
<= -
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Strand Displacement Cascades

2 3
-
2 4
1 2 3 4 5
--- A\ S > >
<= -

Tuesday, September 20, 2011



Strand Displacement Cascades

2 3 4
-=>
2
1 2 3 4
- P = == >
<= -
I* Pk Tk Vs
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Strand Displacement Cascades

2 3 4
==
2
1 2 3 4
--— .- >
<= -
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Strand Displacement Cascades

1 2
--- >
2 3 4
-
2 3 4
--- >
<= -
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Strand Displacement Cascades
example: Catalyst

1 2 2 3
———— ———
catalyst
2 3 4 5 12 4 5
- P > oy >
I* 2¥ 3* 4* I* 2% 3* 4
substrate
2 3 4 . 1 2 4 5
fuel catalyst output
12 4 5 2 3 4
<= " «- e >
I* ok 3 4% I* xk Pk 4%

Zhang, Turberfield, Yurke, Winfree, Science 318: 1121-1125, 2007
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AND Logic Gate

_ . e - —

0% 2:x< Tk e

input X waste
2 3 4 5 6 7 8 5 6 7 8
= e == « i ==
S 3 g 5 6 3k 4x 5 6
AND gate intermediate
1 4 5 6 5 6 7 8
- -> - -
input Y output Z
1
5 6 71 8 \ 4 5 6
--> P —
T I A &
intermediate waste

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587 (2006)
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AND Logic Gate

Tuesday, September 20, 2011

O*

1 4 5 6
--- -
input Y
2 3 4 5 6 7 8
--- - => --- -
- - -
3* o 5* 6*
-5*- 3>l< -41;
input X

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006



AND Logic Gate

1 4 5 6
--- -
input Y
2 3 4 5 6 7 8
--- - => --- -
< - - - ---
0%* 2 3* 4 5* 6*
3k
4%

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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AND Logic Gate

1 4 5 6
--- -
input Y
2 3 4 5 6 7 8
--- - => --- -
< - == ---
0%* 2 3* 4 5* 6*
3k

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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AND Logic Gate

2 3 4
.- .=
- - -
waste
1 4 5 6
.- -
input Y
5 6 7 8
- ==
- - -
3 4 5 6+

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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AND Logic Gate

2 3 4
- -=>
- - -
waste
6
1 5 >
4 5 6 7 8
- - -
- - -
3% 4% 5 6*

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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AND Logic Gate

2 3 4
.- .=
- - -
waste

1 5
\ . . 6 i 8
- -=p -

- - -
3 4 5 6"

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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AND Logic Gate

2 3 4
--- -=>
- - -
waste
5 6 7 8
--- -==>
output Z
1
4 5 6
-=- -=>
- - -
3* 4 5* 6+

waste

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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AND Logic Gate

_ . e - —

0% 2:x< Tk e

input X waste
2 3 4 5 6 7 8 5 6 7 8
= e == « i ==
S 3 g 5 6 3k 4x 5 6
AND gate intermediate
1 4 5 6 5 6 7 8
- -> - -
input Y output Z
1
5 6 71 8 \ 4 5 6
--> P —
T I A &
intermediate waste

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587 (2006)
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Translator Gates:
complete sequence independence

1 2 3 4 3 4 5 6
-- - -- -
input X intermediate output

3 4 5 6 | 2 3 4

- - ->

€ - ———— € ————

> FE 4 2 3 4
Translator gate | waste

3 4 5 6 5 6 7 8

- - -- -
intermediate output output Y
5 6 7 8 3 4 5 6
- ) -
€ ———— €« ————
& 5 6 ¥ 5 6
Translator gate 2 waste

based on Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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Experimental technique: Fluorescent readout

- RS

<=

e 4 P g

Fluarophore
BioSearch Blue
Acridine oy 493 N
Coumarin QR 430-520 nm
FAM

Rhodamine Green

TET 521 EECI BHO-1

CAL Fluor Gold 540 WICTETAJOE 522 544 EEELERTT
JOE LI TR Ot 480-580 nm
WIC 538 554

HEX 535 554

CAL Fluor Crange 560  VICHERJOE 533 559

Quasar 570 Cy3 548 )

TAMRA 557 583

Rhodamine Red 560 S80

CAL Fluor Red 530 TAMRA 569 591

Cy3s 581 506

ROX 575 602

CAL Fluor Red 610 Texas Red 580 &810

CAL Fluor Red 635 LC Red 640 613 6537

Pulsar 650 460 G50

Quasar 670 o5 647 B&7

Quasar 705 Cya.5 650 Jo5
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Experimental Data for One AND Gate
and an | I-gate Logic Circuit

let-7¢ trans
[ N
/ AND
miR-124a tra}, J
—4d miR-15a trans AND w
—] o <
miR-10b tra)s'

miR-143 i%'
trans

miR-122a

— 1r _— _L
s =05 ON
S o5 bothinputs | & 1
S <
-4 v
g > 4
E S s OFF
- “ o0 2 4 6 8 10 121t

Time (hours) Time (hours)

Seelig, Soloveichik, Zhang, Winfree, Science 314: 1585-1587, 2006
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Experimental Data for Catalyst

varying amounts
of catalyst

¥

¢1x (10 nM)
0.5x

e 0.2x

&
N
o

0.1x

0.05x

0.25}

Fluorescence (arbitrary units)
o
(9]

. . , : chntrol
0 0.5 1 1.5 2
time (hr)

Zhang, Turberfield, Yurke, Winfree, Science 318: 1121-1125, 2007
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VisualDSD: A formal language for describing and modeling
strand displacement cascades

i}

— _) — pa—— sty
>
<1>[2]:<6>[3" 4].5M" f T . == — - T
7 (o)
2-Noilk:..74
2% 3% 4% o Lakin, Phillips, Cardelli at Microsoft Research

http://lepton.research.microsoft.com/webdna/
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Rich Snider, Dmitry Danilov and Zoran Popovic
collaboration with Georg Seelig, David Baker

Flash Game Demo

http://games.cs.washington.edu/DNA _Game/DNA html

Play the introductory levels to get to the exponential amplifier challenge.
You can submit your solution to the challenge through the game website.
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The largest strand displacement cascades implemented in the
laboratory used “see-saw’ gates

4 simple element types:

3
n

n
-

W
( 3]

ql|

n
o}

i
n
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Logic circuits with see-saw gates

A YY1 = [VXaXoXoXq
;;:Dw
D
X3
X4
$ Y2
D X4X3X,X,=0000 y,y,=00 X4X3X,X,=0001  y,y,=01 X4X3X,X,=0100  y,y,=10 XgX3XX,=1001  y,y,=11
1 T i T £ —— LS —
0.8 -
3 0.6
3 04 :
. [0l =0
02 |
o_' .,-“ : ‘ ‘
0 2 4 6 8

Time (hours) Time (hours) Time (hours) Time (hours)

|30 DNA strands
74 initial DNA species (excluding inputs)
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http://www.sciencemag.org/content/332/6034/1196.abstract
http://www.sciencemag.org/content/332/6034/1196.abstract

Neural networks with see-saw gates

a 1
-2 05 — x
1 1
1N\
2 45 X
Lj i
- N\
1 05 X

| 12 DNA strands
72 initial DNA species
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d Q1: Did the scientist study neural networks?

Q4: Was the scientist a mathematician?

Answers: Yes (1), No (0), or | don’t know (?)

0 0 Rosalind Franklin

1 1 Alan Turing

0 1 Claude Shannon

1 0 Santiago Ramon y Cajal

Franklin

? 1—7 1 ? 7?7 —>x X
1 1
0.8 — 08} e
§_0.6
0.4 Not enough
OO 2 informati _ Wrong
’ — information
6 8
Time (h)
vy 1 0 1 0 1 . x0 1
Xq X4 X5 — X5 X3 X3 Xg— Xy



Be able to take any mass-action CRN
and implement it in the test tube

l: X1 — 2X1
2: ox, 22 x;
30 XN 4X —— 2%
4 X2 i
5: X;+X3 L>

16.5
6: X3 E— 2X3
7: 2%, 22 X,

e implicit energy/mass source (no conservation restrictions)

e can use auxiliary species to help mediate reactions

e desired behavior up to scaling in time and concentration

e allow degree of approximation: correct behavior in some limit

David Soloveichik, Georg Seelig, Erik Winfree, “DNA as a Universal Substrate for Chemical Kinetics”,
PNAS 107:5393-5398,2010
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Format of formal species

species
identifier

invariant: species is active if species identifier is entirely single-stranded
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Unimolecular reaction x—-Y

Translator gate | :
and unreactive waste

4 5 6 7

< ==

Translator gate 2
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Unimolecular reaction x—-Y

1 2 3 2 3 4 5
--- == ---
X intermediate output
2 3 4 5 1 2 3
P — P —
I* 2% 3* I >k e
Translator gate | unreactive waste
2 34 2, 45 6 7
intermediate output Y
4 S5 6 7 2 3 4 5
BE N
Translator gate 2 unreactive waste
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B A S

Bimolecular reaction x+y-z

reaction gate

7 8 9

10

6* T* &
translator gate

Tuesday, September 20, 2011

2z 34

backward strand

and unreactive
waste



Bimolecular reaction x+y-z

A2 3 2 34
X backward strand
2 34 S5 6 T 8 2 3 > 6T 8
roo2» ¥4 56 Foo2» ¥4 56
reaction gate activated reaction gate
4 5 6 > 6 T 8
Y intermediate output
123 5 6 7 8 I N 4 5 6
- ———F - 7 i E—
I* 2% 36 4* 5 6* I* 2% 3 4 5% 6*
activated reaction gate unreactive waste
5 6 7 8 7 8 9 10
— == ===
intermediate output y
7 8 9 1 q 5 6 ;8)
6* T* & 6* T+ &

unreactive waste
translator gate

Tuesday, September 20, 2011



Complex self-generated behavior with strand
displacement cascades (simulations)

Oregonator (limit cycle oscillator) Predator-prey
nMF
X X

s A 5t I:X|+X3L~2X:
Xo+X1— 0 4l = X, X2, oy
X — 2X1 4+ X3 3l o Al A <11

2X; — 0 ) : . 3: X2 =0

I

X; — X 1 ! ! unscaled  scaled

I\ / ky 1.5 $-10° MU

5= 0 0 50 100 150 200 250 hr k1 10k
A3 1 17300 /s

A AL

n
o

s == ideal = Dfo]
Réssler (chaotic) £ 45 | "
X; — 2X % |
2X, — X % i 1
X0+ X — 2X5 8 5 |l
XZ — @ 8 /l‘ L \
Xi+X5 — 0 00 05 10 15 20 25 30 35
X3 — 2X3 time (hrS)
2X3 — X3

- simulation of ideal CRN

—— simulation of DNA implementation
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Dynamic logic circuits and state machines with strand displacement
cascades (simulations)

2-bit pulse counter nM
(digital circuit) 60

bl i _T 30J M || || ||
0 . .

U 60 |

0 20 40 60 80 100 hr

incrementor state machine M. -
NMipnnpn sy nn s e g g,
v'=0 o i Rl 1 i e :: Honn phnnnn i ::
o D0 Bt

0 fi B
O it v ey gt

Ay S
201
) (= 10

0 20 40 60 80 100 hr

- simulation of ideal CRN

—— simulation of DNA implementation
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Toward laboratory implementation of CRN = strand
displacement cascades (work in progress)

nits)

A+B->2B
B+C—52C
C+AD2A

ntration (arbitrry u
(=]

1
time (arbitrry units)

50

concentration (nM)
N
o,

1:00 PM 2:37 PM 415 PM 5:52 PM 7:30 PM
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The Programming Language of Chemical Kinetics

stochastic and mass-action

different notions of input&output fast/slow possible/impossible deterministic/allowing error

How To Discipline Your DNA Molecules with Strand
Displacement Cascades

artificial analogs of signaling networks 3 rules description

catalytic amplifier, circuits, neural networks theoretically can implement any CRNs
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